Sequential Deep Learning for Human Action Recognition
نویسندگان
چکیده
We propose in this paper a fully automated deep model, which learns to classify human actions without using any prior knowledge. The first step of our scheme, based on the extension of Convolutional Neural Networks to 3D, automatically learns spatio-temporal features. A Recurrent Neural Network is then trained to classify each sequence considering the temporal evolution of the learned features for each timestep. Experimental results on the KTH dataset show that the proposed approach outperforms existing deep models, and gives comparable results with the best related works.
منابع مشابه
Deep Learning For Sequential Pattern Recognition
Faculty of Electrical Engineering and Information Technology Department of Geometric Optimization and Machine Learning
متن کاملDeep Activity Recognition Models with Triaxial Accelerometers
Despite the widespread installation of accelerometers in almost all mobile phones and wearable devices, activity recognition using accelerometers is still immature due to the poor recognition accuracy of existing recognition methods and the scarcity of labeled training data. We consider the problem of human activity recognition using triaxial accelerometers and deep learning paradigms. This pap...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملLearning and Recognizing Human Action from Skeleton Movement with Deep Residual Neural Networks
Automatic human action recognition is indispensable for almost artificial intelligent systems such as video surveillance, human-computer interfaces, video retrieval, etc. Despite a lot of progresses, recognizing actions in a unknown video is still a challenging task in computer vision. Recently, deep learning algorithms has proved its great potential in many visionrelated recognition tasks. In ...
متن کاملSequential Dual Deep Learning with Shape and Texture Features for Sketch Recognition
Recognizing freehand sketches with high arbitrariness is greatly challenging. Most existing methods either ignore the geometric characteristics or treat sketches as handwritten characters with fixed structural ordering. Consequently, they can hardly yield high recognition performance even though sophisticated learning techniques are employed. In this paper, we propose a sequential deep learning...
متن کامل